
CHAPTER 1
PREVIOUS WORK

The intelligent control of distributed aperture optical systems lies at the intersection of remote

sensing, optical physics, computer vision, and sequential decision making under uncertainty. This

chapter presents a review of relevant foundational and recent work in each of these disciplines, and

draws those relations among them that inform the problem formulation given in Ch.2. The chap-

ter is divided broadly into remote sensing (RS) and artificial intelligence (AI), which are further

partitioned into relevant sub-disciplines. Within remote sensing, classical image formation, prin-

cipals of distributed aperture imaging (DAI), and applications of remote sensing to resident space

objects (RSOs) are reviewed. Literature from the field of AI is grouped into foundational works,

deep learning, computer vision, and reinforcement learning; descriptions are given chronologically

and terminate in cross-disciplinary work related to remote sensing. While not comprehensive, the

work reviewed in this chapter comprises the foundation upon which both the problem formulation

(Ch. 2) and the methods used in this work (Ch. 3) are built. The intersectional hierarchy of topics

covered by review is illustrated in Fig. 1.1, in which this work is positioned relative to those topics.

Figure 1.1: A domain overview, in which this work is positioned relative to artificial intelligence,
deep learning, reinforcement learning, computer vision, deep computer vision (DCV), deep rein-
forcement learning (DRL), visuomotor DRL, remote sensing, astronomical imaging, distributed
aperture imaging, and optical control.
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1.1 Remote Sensing

The term remote sensing was first introduced in 1960 [10], though the first recorded instance of a

human activity satisfying the modern definition of the term dates to 1608 [61]. For the purposes

of this work, remote sensing is defined as the acquisition of information about an object through

analysis of data collected by a device that is not in contact with the object, which is adapted

from Lillesand et al. [32]. Clearly, remote sensing is foundational to astronomy, and the sensing

of resident space objects generally. The work presented in this dissertation is motivated by two

primary remote sensing applications: the discovery of exoplanetary life and the perception of man-

made satellites. These applications lie in the antithetical extremities of a spectrum of remote

sensing applications. The former involves the sensing of distant, large, relatively homogeneous,

natural objects at low spatial resolution, but provides answers to profound questions about the

nature of life in the universe; the latter entails sensing of comparatively nearby (5− 100× 106 m),

small, highly structured, artificial objects at high spatial resolution, and has immediate practical

uses. Between these extrema lie a variety of intermediary applications which may yet be defined.

In this section, relevant works from the field of astronomical remote sensing are reviewed. The

fundamental models of optical systems are described, and several key relations are given. A discus-

sion of the contemporary work quantum theoretic approaches to image modeling is provided. The

section concludes with a brief discussion of the application of modern computer vision techniques

to problems in remote sensing of space objects.

1.1.1 Optical Systems

Like all physical systems, models must be used to describe and engineer optical systems for remote

sensing. An image may be formulated as a measure of the intensity, I, of electromagnetic radiation

distributed over some space of interest. Typically, this measure will have units of W/m, W/m2,

W/rad, or W/sr. The imaging target, known as the object, is modeled as a collection of point

sources over some spatial extent and is denoted O(x). Optical diffraction for far-field images is

well modeled by Fraunhofer diffraction. For light of a wavelength λ diffracted through a circular

aperture of radius a and measured on a Cartesian focal plane at a distance L from the aperture,
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intensity is modeled by

I(x) = I0

[
2J1(x)

x

]2
, (1.1)

where I0 is the maximum intensity, J1 is the Bessel function of the first kind, and the distance

along the focal plane, x, is given in terms of angular distance from the apertures optical axis, θ, as

x = (2πa/λ) sin θ [23]. Eq. 1.1 holds when L� a2/λ, which is a reasonable assumption throughout

this work. The symmetric region bound by the first zero of I(x) is known as the Airy disk [23] and

is used to quantify the size of the smallest classically resolvable element of an image. An optical

system is said to be diffraction limited if the only blurring of incident energy from a distant source

is caused by diffraction. For a point source, which is defined as an object of much smaller angular

than the Air disk of the optical system imaging that object, the incident energy will be spread

across the focal plane exactly as prescribed by Eq. 1.1; as such, Eq. 1.1 is known as the point

spread function (PSF) of a diffraction limited optical system. The PSF of an image may possess

artifacts from any number of optical, scene, or atmospheric aberrations.

Two point sources are said to be resolvable by a diffraction limited imaging system having a

circular aperture with diameter D if their angular separation in radians, θ, satisfies the inequality

θ ≥ 1.22
λ

D
, (1.2)

where λ is the wavelength of the source. Eq. 1.2 is known as Rayleigh’s criterion [43], and denotes

the angular separation at which the two sources are closer to one another, as measured by their

apparent separation, than edge of their Airy disk. The definition of resolvability provided by

Raleigh’s criterion is widely adopted, but inaccurate [64]. Researchers across several disciplines

have demonstrated techniques to resolve point sources that do not meet Rayleigh’s criterion [41, 42,

8]. Collectively, these techniques are known as subdiffraction limited imaging, or superresolution.

While a complete review of superresolution is beyond the scope of this work, Sec. 1.1.3 provides a

brief overview of relevant interferometry superresolution techniques.
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1.1.2 Image Formation

The work described in the preceding paragraphs provides some constrains on the resolution of an

imaging system, but is insufficient to describe image formation. To form a direct image, photons

are focused onto a focal plane, on which a collection instrument is positioned. In this work, that

instrument will be a scientific charge-coupled device (CCD) camera [9]. CCDs comprise pixels, each

of which integrates incident photons by using the incident energy to move electrons from a source

line into a local capacitor. These electrons are periodically discharged and their number estimated.

The resulting raster of electron counts is known as an image; it would, however, be more precise to

describe it as an image estimate. Each CCD pixel subtends a solid angle1 from which photons are

integrated. This subtended angle is known as the instantaneous field of view (IFOV) of that pixel.

The IFOV is given by the system field of view (FOV), divided by the pixel count of the camera;

both of these features are free parameters of the optical system design2.

Using these concepts, and assuming that the subtended angle (IFOV) is small, the spatial

resolving power, s (in meters), of a traditional diffraction-limited optical system with a primary

aperture diameter of D over a distance r at a wavelength λ, is given by

s = 2r tan

(
1.22

2

λ

D

)
≈ 1.22

rλ

D
. (1.3)

The aperture diameter required to achieve a given resolving power of a target at a known distance

is then

D =
1.22

2

λ

arctan(s/2r)
≈ 1.22

rλ

s
. (1.4)

This analysis uses Rayleigh’s Criterion (Eq. 1.2) to define a resolvable element, and thus represents

a classical bound lower bound on resolving power. The small-angle linear approximations used in

Eqs. 1.3 and 1.4 are consistent with the conditions of astronomical imaging, for which D � λ.

1Strictly, each CCD pixel subtends two solid angles: one in each dimension. For notational convenience, this work
assumes square pixels and neglects this nuance.

2One helpful framework for conceptualizing optical systems is as “angle-pass filters.” A successful optical system
sorts incident photons into a set of linearly spaced bins based on their angle of incidence with the primary aperture,
while scattering all light that does not fall into an engineered range of incident angles.
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The work presented in this dissertation may be framed as an attempt to improve on this classical

bound; as such, Eq. 1.4 serves as a useful baseline of comparison.

The optical models used described above are approximations to the underlying quantum me-

chanical phenomena of image formation. For detailed expositions of the quantum mechanical basis

of direct imaging, see Tsang 2016 [57] and Ang 2017 [2]. The direct imaging approaches described

in these works require specific experimental conditions and instrumentation, and are not directly

applicable to the direct astronomical imaging of extended objects. They do, however, provide a

basis for the quantum theoretical limit of resolvability of two sources and, crucially, demonstrate

that subdiffraction imaging (as classically defined) is theoretically supported. Tsang 2016 and Ang

2017 provide theoretical proof that correctly designed estimators can image at arbitrarily high pre-

cision under certain observational and instrumental constraints. Building on these results, Zhou

and Jiang [64] reformulate Rayleigh’s criterion in modern (by which they mean quantum mechan-

ical) terms. In doing so, they extend the findings of Tsang 2016 and Ang 2017 to arbitrarily many

point sources of arbitrary strength (as measured by source flux or incident energy), in both one-

and two-dimensional images. Formally, Theorem 2 of [64] states that the variance of an unbiased

estimator for the second moment of source location (in both one and two dimensions) is bounded

by a constant3. This insight leads naturally to the observation that an interferometric direct imag-

ing system may, in theory, achieve a resolving power (in classical terms) greater than that of a

equivalent diameter classical, diffraction-limited optical system, in which the resolving power is

limited by Rayleigh’s criterion. A directed interference pattern generates a modulation transfer

function (MTF), which may be thought of as an estimator4 of the first and second moments of the

locations of the point sources comprising the underlying true image, because an MTF that aligns

more closely with the power spectrum of the underlying true image will yield an image that is more

similar to the true image [61]. This observation motivates much of this dissertation.

The preceding material is primarily concerned with diffraction-limited imaging scenarios in

which the only source of aberrations, or path-length differences from source to focal plane, are

3Variance of higher moments increase inverse-polynomially with image size, which may imply interesting tradeoffs
between FOV and pixel count design parameters.

4The parameters of this estimator correspond to commanded articulations of the secondary apertures in the case
of a system like Exolife Finder.
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the imaging systems themselves. In practice, astronomical images are almost never free from

aberrations [47]. Ground based systems must contend with the atmosphere, and even space based

systems have optical aberrations induced by design constraints or introduced inadvertently. The

process of approximating the underlying true image from an imperfect sample is known as image

recovery [52]. A specialized sub-discipline of image recovery has evolved to address the unique

challenges attendant to imaging through an atmosphere over great distances, as is required for

astronomical image recovery. Among the most commonly used techniques is multi-frame blind

deconvolution (MFBD) [48]. MFBD provides a maximunm likelihood estimate the atmospheric

PSF from a series of short exposure images (or specklegrams). This approach was later parallelized

for practical use by Matson et al. [35] and the resulting algorithm, Physically Constrained Iterative

Deconvolution (PCID), is widely-used for uncompensated imaging of space objects. Recent work

by Werth et al. adapted PCID to execution on modern GPUs, resulting in a 11-fold acceleration

of image recovery [59]. These postprocessing image recovery approaches are highly applicable to

the image recovery subproblem explored later in this dissertation.

The task of designing a scoring criteria or metric for images, generally, without respect to a

known true signal, has been treated extensively. See, for example, Stark 2013 Ch. 7. For national

security applications the National Imagery Interpretation and Rating System (NIIRS) is widely

used [22, 16]; the Space NIIRS (SNIIRS) is applicable to spatially resolved imagery of RSOs, and

is therefore directly applicable to one task addressed in this work. Recent work has automated the

estimation of the SNIIRS score of ground-based images using convolutional neural networks under

a range atmospheric conditions and for a variety of target types [29]. There have also been both

statistical [49] and information theoretical [39] treatments of image formation.

1.1.3 Distributed and Shaped Aperture Imaging

Sophisticated methods have been developed to compensate for atmospheric aberrations in ground-

based optical systems both actively [18] and passively [48], while space based missions avoid the

complication entirely. Yet these approaches often entail prohibitively high costs and complicate

sensor operations. Even in the diffraction-limited case, all monolithic optical systems share a
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Figure 1.2: A render of the ExoLife Finder telescope design. The primary aperture are structured
as an annulus of circular subapertures.

fundamental constraint: to image an object to a chosen level of sensitivity at a fixed distance with

higher contrast or angular resolution, one must use a primary aperture with a larger diameter.

Thus, direct imaging of very distant objects at high angular resolution requires very large-diameter

apertures. Collectively, such telescopes are known as Extremely Large Telescopes (ELTs) [63].

Many ELT designs have been proposed and are under active developed, but facility cost remains

a scale-limiting risk even for large-scale international scientific initiatives [4]. Telescope cost for

modern glass and steel telescopes is estimated to scale linearly with the area of the primary aperture;

for modern segmented arrays, the area/cost proportionality constant is on the order of 106 $/ton

[28]. This places ELTs far beyond the limits of practicality for many applications.

The prohibitively high cost of traditional ELTs has motivated research into alternative designs

that scale more effectively. The Exo-Life Finder (ELF), show in Fig. 1.2, is an ELT that employs a

lightweight tensegrity structure to suspend an annulus of small, low cost mirror segments to achieve

an ELT-scale aperture with lower mass and cost [27]. The reference design mission for ELF is the

detection of exoplantetary biosignatures [11] using collected spectra [7], but the sensing concept is

readily extensible to other applications.

The ELF design reduces cost, but introduces a complication: the design induces path-length
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difference aberrations. Because the primary aperture segments are not in direct contact with one

another, they cannot easily be aligned. The difference in optical path lengths caused by natural

oscillations in the structure of the telescope will blur any formed image. To compensate for these

aberrations, the ELF design includes articulated secondary apertures which may be rapidly adjusted

to correct aberrations caused by the motion of the telescope and the atmosphere. The online control

problem associated with choosing and realizing the correct articulations, given the available image

data, remains unsolved. Interestingly, formulating ELF secondary articulation as a control problem

naturally suggests a related question: if one can realize an aperture control policy that minimizes

aberrations5, could not one also realize a control policy that adapts the PSF to maximize recovery

of a spatially extended target? Much of the work in this dissertation addresses this question.

1.2 Artificial Intelligence, Machine Learning, and Computer Vi-

sion

Artificial intelligence is a discipline within the field of computer science that is concerned with the

creation of intelligent machines. What is meant here by ”intelligent” is the subject of some debate,

but for the purposes of this work it will suffice to define a machine as intelligent insofar as it is

successful at a task, which may be of arbitrary complexity. Machine learning is an approach to the

design of machine intelligence, in which parameterized machines are adapted to data in order to

perform tasks.Deep learning is a sub-discipline of machine learning in which deep neural networks

are trained using error back-propagation . Deep neural networks are known to be universal function

approximators [20]. As such, most recent work in deep learning is concerned with the design of

model architectures, regularization, and learning frameworks that improve model training and

generalization performance [46]. State of the art performance on for tasks in many previously-

distinct fields of study, such as reinforcement learning (RL), natural language processing (NLP),

and computer vision (CV), is now achieved almost exclusively by deep learning methods.

While computer vision has been an active field since the mid-1960s [40], the advent of the

5The minimization of aberrations results in the most point-like PSF possible, which maximizes recovery of point-
sources.
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modern era in the field is often dated to the 2012 publication of AlexNet [26]. Krizhevsky et al.

contributed the first simultaneous usage of a large-scale dataset [14], convolutional neural networks

for efficient weight-sharing [30], and accelerated matrix computation using graphics processing units

(GPUs) [38], in the context of open-source frameworks [1] that support automatically differentiated

(autodiff) computational graphs for back-propagation [44]. AlexNet marked the beginning of the

widespread adoption of deep learning techniques to perceptual automation tasks.6

1.2.1 Reinforcement Learning

Supervised and unsupervised learning approaches enjoy broad study and fruitful applications, yet

many tasks cannot easily be formulated as either surprised or unsupervised learning applications.

For example, some problems involve perceptual tasks and sequential actions, but do not admit

direct feedback about the quality of a given action. In this scenario, no label is available for

individual perceptual instances by which to evaluate an action, nor is the task unsupervised. This

complicates credit assignment, and calls for a new formulation of the learning task. We seek to

learn a conditional distribution of actions, given observations of the task, that results in greater

eventual reward. The objective, then, of this type of learning is to reinforce those actions that

yield reward even if the relationship between the action and the eventual reward are not known.

Hence, it is known as reinforcement learning. The following sections render this idea with greater

precision.

Reinforcement learning also generalizes supervised and unsupervised learning. It is possible

to map any supervised learning task to a specialized reinforcement learning task in which only

the reward from the step immediately following an observation is available. Analogously, any

unsupervised learning task may be mapped to a reinforcement learning task in which reward is

always zero. In practice, mature and specialized approaches to supervised and unsupervised learning

tasks outperform the more general reinforcement learning formulation.

6One may frame this emergence as the discovery of a new and particularly effective design pattern, sometimes called
differentiable programming, in which information processing systems are composed of parameterized, composable
feature extractors which are trained end-to-end. In this framing, AlexNet represents the discovery of a new abstraction
in software engineering as presaged by Hamming in [19].
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Sequential Decision Making Under Uncertainty

Many useful tasks can be formulated as the sequential specification of an action, given some infor-

mation about an environment, in pursuit of a reward. These tasks, collectively known as sequential

decision making problems, are often constructed around an agent that observes an environment

and decides upon future actions. This formulation admits tasks with sparse and delayed rewards,

in which direct credit assignment is difficult or impossible.

Any environment may be modeled as a set of possible states, S, together with a representation of

the transition dynamics between states. Transitions between states are represented by a surjective

endomorphism on S, P, that is often modeled as a matrix of order |S| × |S| in which each element

pij represents the probability of transitioning from state sj to state si, denoted Pr(si|sj). For

many tasks, success or failure can be modeled by associating a reward, R(s), with each state,

where R : S → R. Given only this environment model, it is possible to reason about the expected

evolution of the environment [50, 21] without intervention by an agent. To model the interaction

of an agent and its environment a set, A, is introduced, comprising elements representing actions

that can be taken from every state s ∈ S. The influence of agent behavior on the evolution of

an environment is modeled by conditioning both the transition function, P = Pr(s′|a, s), and the

reward function, R(s, a, s′), on an action a ∈ A, taken in state s, resulting in a subsequent state s′.

Given models of the state, transition dynamics, reward, and actions, it is possible to construct

an agent-agnostic representation of a sequential decision making problem. Markov decision pro-

cesses (MDPs) model the collective valuation of sequential, enacted decisions made by an agent7

contextualized in an environment [6]. An MDP may be represented as a tuple 〈S,A, P,R, ρ0, γ〉.

MDPs implicitly model the sequential actions: proceeding from the start state, s0 ∼ ρ0 at each time

step, t, an agent selects an action at ∈ A given the present state st ∈ S. In return, the environment

model provides a subsequent state, st+1 and reward, rt+1. This process continues indefinitely, or

until some finite horizon, t = T, is reached. A discount factor, γ, is included in most modern

MDP formulations because it facilitates differential valuation of rewards depending on when those

7While agent, actor, and policy are often used interchangeably, they need not be a single entity. For example,
in a distributed, multi-agent decision-making system agents may process information without developing a policy,
a policy may be constructed without interaction with any agent, and an actor may realize a provided action in the
world without performing any information processing.
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rewards were received. This is both mathematically convenient for infinite-horizon (T =∞) MDPs

[51], and necessary to express certain problem structures [21].

MDPs model fully observable environments: by definition, S is the set of all possible causal

states [12] of the environment. Thus, given some s ∈ S, an observer possesses all information about

an environment in that state. In practice, few tasks admit this degree of observability. Often, ob-

servation is limited to a subset of the state, an indirect representation of the state, or a combination

of both. The problem of MDP control under incomplete state information was first introduced by

Astrom [3], though this formulation was prefigured by Drake [15]. Over several decades, a model

of partially observable Markov decision processes (POMDPs) that generalized MPDs was matured

and standardized [60, 24]. POMPDs are formulated as a tuple, 〈S,A, P,R,Ω, O, ρ0, γ〉, which is

an MDP extended to include a set of possible observations, Ω, and a conditional probability dis-

tribution, O, over that set. Of particular relevance to this work, O may represent a statistical

model of a image formation, given some underlying sensor, environment, and target object state.

This work follows the convention, common in recent reinforcement learning work, of neglecting

the distinction between state and observation in analytic expression when describing interactions

between the agents and the environment.

By definition, both MDPs and POMDPs conform to the Markov property, which specifies that

future states are of independent historical states given the present state [34]. Assumption of the

Markov property simplifies the analytic representation of a decision process, but also implies that

each state or observation is a sufficient statistic of the history of the environment [13]. This is

rarely true in practice, so the design of effective solutions to a problem modeled by an MDP is

often predicated upon careful mapping from the problem itself to a model of the problem in which

the observation or state is a reasonably sufficient statistic of the history of states. The design and

development of a representative environment model enables the formulation of a corresponding

decision making agent.

An environment model implicitly specifies the external details of a decision making agent acting

in that environment. The observations and actions available to the agent, as well as the reward it

will maximize, are determined by O, A, and R from the corresponding MDP, respectively. Many
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agent-environment interactions may also be represented using only the MDP in which the agent is

contextualized. An agent interacting with an environment necessarily traverses a sequence of states

and actions, which is known as trajectory, τ = (s0, a0, s1, a1, ...). An episode is a finite trajectory

from a start state to a terminal state, τ = (s0, a0, ..., aT−1, sT ), where T is the horizon. The set

of finite-horizon trajectories possible in an MDP is τT = S × (A × S)T . As an agent traverses a

trajectory, a sequenced of rewards are accrued. The return of that trajectory is the discounted sum

of returns,

R(τ) =
T∑
t=0

γtrt, (1.5)

where T ∈ Z for the finite-horizon return and T =∞ for the infinite-horizon return.

MDPs provide a means by which to reason precisely and discriminatively about agents making

sequential decisions in an environment. They do not, however, include a representation of the

internal state of the agent, nor do they specify a means by which to construct agents which achieve

high reward. These activities are the principal concern of the discipline of reinforcement learning.

Foundations of Reinforcement Learning

Markov decision processes provide a precise language with which to reason about tasks. Reinforce-

ment learning supplies a compatible8 formalism, the policy, representing solutions to tasks. Sutton

and Barto [54] identify two independent lines of intellectual activity, optimal control and trial-

and-error learning, which unify and terminate in modern reinforcement learning. In this section,

the expressions and concepts common to many modern applications of reinforcement learning are

reviewed.

A deterministic policy, η, is a mapping η : S → A. An agent enacting a policy η chooses action

at ∈ A using at = η(st). A stochastic policy, denoted π, represents a conditional probability density

function (PDF) over A conditioned upon some s ∈ S. To select an action from a stochastic policy,

an agent samples from π. The method of sampling is determined by the structure of the elements

in A. If the actions are discrete, a multinomial Bernoulli (categorical) distribution is typically used

8The terms policy and agent are often used interchangeably, though it is perhaps more accurate to describe a
policy as a realization of the abstraction to which the term agent corresponds
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to model π. If the action space is continuous, as is the case in this dissertation, the policy must

estimate the sufficient statistics of some distribution class, which may then be sampled. A diagonal

multivariate Gaussian is commonly used for this purpose. The policy is sampled by estimating

both the mean and standard deviation vectors of the diagonal Gaussian, µ and σ, then sampling

the action space using at = µ(st) + σ(st) ◦ z, where z ∼ N (µ = 0,Σ = I). For convenience, the

notation that follows assume a stochastic policy, π.

Because a stochastic policy models a PDF over agent actions, it can be used to represent

agent-influenced state transition probabilities, P (st+1|st, at)π(at|st). A trajectory is produced by a

sequence of agent-influenced state transitions, so this same model of transition probabilities may

be extended to compute the probability of a trajectory conditioned upon the policy followed by the

agent. Given a finite horizon, the probability of an agent that is following π traversing a trajectory

τ is given by

P (τ |π) = ρ0(s0)

T−1∏
t=0

P (st+1|st, at)π(at|st.) (1.6)

Naturally, one may reason about the expected performance over all possible realizations of the

MDP using the marginal expectation of P (τ |π) over all values of τ . The expected return of the an

agent acting according to π,

J(π) =
∑
τ∈τT

R(τ)P (τ |π) = E
τ∼P (·|π)

[R(τ)]. (1.7)

With these concepts defined, the objective of reinforcement learning may be expressed precisely:

one must construct a policy, π, so as to maximized the expected return, J, in the context of an

environment modeled as an MDP. Formulated as an optimization problem, an optimal policy π∗ is

sought, where

π∗ = arg max
π

J(π). (1.8)

Approaches to this problem abound. A complete review is beyond the scope of this work, but may

be found in several comprehensive surveys of the field [25, 55]. In the remainder of this section, the

essential concepts upon which modern deep reinforcement learning (DRL) is founded are described.

13



The simplest method of constructing an optimal policy is to list each trajectory and to select,

in each step, that action which is most likely yield the start state of the trajectory with the largest

return 9. This is, of course, infeasible in all non-trivial MDPs. However, this method introduces the

idea that the expected return from a state is useful when designing policies. Bellman formalized

this insight by introducing what is now known as the value function,

V π(s) = E
τ∼π

[R(τ)|s0 = s], (1.9)

which is the expected return obtained by an agent following π that begins in state s. Because V π(s)

is conditioned on π, this is typically called the on-policy value function. Bellman, in the same work,

introduces the principle of optimality: all actions taken by an agent executing an optimal policy

are themselves optimal with respect to the preceding actions taken by that agent. This follows

directly from self-consistency with the definition of an optimal policy, because the actions of an

optimal policy are optimal regardless of when the decision was made. This principle involves both

the value of states in the context of optimal policies, and the valuation of state-action pairs. The

value function of a state, given an optimal policy can be expressed as

V ∗(s) = max
π

E
τ∼π∗

[R(τ)|s0 = s]. (1.10)

To represent the expected return of an action taken in a state, Eq. 1.9 is extended to include the

specification of an initial action in addition to an initial state. This is known as the action-value

function, and is given by

Qπ(s, a) = E
τ∼π

[R(τ)|s0 = s, a0 = a]. (1.11)

As with the optimal state value function, the optimal action-value function is obtained by specifying

π as that policy which maximizes expected return,

Q∗(s, a) = max
π

E
τ∼π∗

[R(τ)|s0 = s, a0 = a]. (1.12)

9Bellman, in the preface to [5], describes this as the ”enumerative” approach, and coins the now-ubiquitous ”curse
of dimensionality” to describe its failure mode. He subsequently coins the less pervasive but equally useful terms
”pitfalls of oversimplification” and ”morass of overcomplication.”
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With these analytic expressions for value and state-value functions, it is possible articulate

Bellman’s principal of optimality mathematically. Under a stochastic policy, the optimality prin-

ciple states that the expected return of an agent following a policy from a state, V π(s), is equal

to the expected instantaneous reward achieved by following the policy (over the action space PDF

implied by π) in that state, plus the γ-discounted expected return of the expected next state (over

the state-space PDF implied by the MDP, under the expected action implied by π),

V π(s) = E
a∼π

[
r (s, a) + γ E

s′∼P

[
V π
(
s′
)]]

, (1.13)

where a ∼ π is shorthand for a ∼ π(·|s) and s′ ∼ P is shorthand for s′ ∼ P (·|a, s)10. The principal

of optimally also extends naturally to the state-value function, the only difference being that the

instantaneous action is given, and thus is not conditioned upon the policy.

Qπ(s, a) = r (s, a) + γ E
s′∼P

[
E

a′∼π

[
Qπ
(
s′, a′

)]]
. (1.14)

Here, s′ ∼ P denotes that s′ ∼ P (s, a) and a′ ∼ π denotes a′ ∼ π(s′). These expressions are

known as the on-policy Bellman equations for MDPs. Substituting an arbitrary policy, π, with

an optimal policy, π∗, yields the Bellman optimality equations for an MDP. The optimal Bellman

value function is given by

V ∗(s) = max
a

[
r (s, a) + γ E

s′∼P

[
V ∗
(
s′
)]]

, (1.15)

while the optimal Bellman state-value function is given by

Q∗(s, a) = r (s, a) + γ E
s′∼P

[
max
a′

Q∗
(
s′, a′

)]
. (1.16)

The optimal Bellman value and state-value equations for MDPs11 are the foundation upon which

10TODO: somehow cite or discuss the Spinning Up readthedocs, which is almost identical to this - but which I
only found AFTER writing it.

11Bellman equations and the optimality principle are central to an entire approach to sequential problem solving
known as Dynamic Programming. The MDP formulation of the reinformcnent learning problem is only one application
within this broader field of study.
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most modern DRL methods are built, and were a central feature of the next major advance in

reinforcement learning: value iteration and temporal difference methods.

One approach to reinforcement learning is to directly estimate the optimal value or action-value

functions for an MDP. Given the optimal value function, one can construct an optimal policy by

applying the value function to all reachable states and selecting the action which provides the highest

expected probability of transitioning to the state with the highest estimated value. The optimality

of the resulting policy is implicit in the definition of V ∗(s), assuming that the problem has optimal

substructure. An optimal state-value function further simplifies policy construction by providing

an estimate of the value of all possible actions from any state. Yet these approaches, collectively

known as value-function methods, require the optimal state or state-value function which must, in

turn, be estimated. To estimate the optimal value function Bellman introduces value iteration, an

application of dynamic programming. Value iteration refines an estimate of V ∗(s) by searching A

for the action that maximizes V (s) and setting the estimate of V ∗(s) to that value.

Alternatively, one may optimize the policy to improve the expected reward. This family of

approaches, known as policy iteration methods, was first introduced by Howard [21] shortly after

the discovery of dynamic programming. Policy iteration improves the expected reward of an agent

conditioned upon a randomly initialized policy by evaluating V π(s), then modifying the policy so

as to improve the expected reward. Both value iteration and policy iteration estimate the value

function, but policy iteration computes the expected value of V π(s) given the behavior distribution

defined by the policy, rather than searching for the action that maximizes V ∗(s) directly.

Policy and value iteration are often inapplicable to practical control and decision-making prob-

lems because they require the environment dynamics (i.e., P and R) to be known. To move beyond

these dependencies, the environment dynamics, sometimes called the environment model, must be

estimated from experience; the model estimate may be explicit, such as a matrix representing P,

or implicit, as is the case when policy parameters are directly adjusted to improve expected return.

To build an estimate of the dynamics of an environment, we may observe an agent contextualized

in that environment and record the responses of the environment to the agents actions. Appli-

cations leveraging this approach are known as Monte-Carlo (MC) methods which can be realized
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either on-policy or off-policy and, unlike policy and value iteration, do not involve bootstrapping.

MC methods may be used to directly estimate the value and state-value functions by sequentially

sampling from the environment and storing the reward achieved at each state, or the return of

a full trajectory [36]. MC policy evaluation is widely-used to assess agent model performance in

recent RL work, and most methods of interacting with an environment may be formulated as MC

sampling from the underlying MDP.

MC methods require each trajectory to proceed until a terminal state is reached, which is often

computationally expensive. To retain the benefits of model-free RL without the computational costs

attendant to MC methods, Sutton developed temporal-difference (TD) learning, which estimate the

value and state-value functions by bootstrapping [53]. TD learning proceeds by estimating a value

for each state, which is updated in the direction of the expected return (or target), which is in turn

value of the next state in the trajectory. As a TD learning algorithm iterates through a trajectory

(or accumulates off-policy transition samples), the observed reward in each state is are partially

credited to the preceding state. Intuitively, the uncertainty in the expected return of a trajectory

will tend to decrease as the number of remaining steps in that trajectory decreases, as there are fewer

opportunities for large changes in the discounted return. In the limiting case (i.e., the final step)

there is no uncertainty, and the remaining return is known exactly. TD learning propagates this

certainty backward through the states of a trajectory, one state at a time. Sutton also generalized

TD learning to bootstrap using an arbitrary number, λ, of steps along the trajectory; this method

is known as TD(λ).

TD(λ) serves as the foundational environment sampling approach for most implementations of

two classic model-free RL approaches, SARSA and Q-Learning, both of which are extensions of

value iteration for unknown environment dynamics. While both methods estimate the state-value

function using environment samples, SARSA is on-policy [45]. Q-Learning was the first approach

to successfully demonstration off-policy estimation of the action-value function without known

environment dynamics [58].

This dissertation builds on the lineage of reinforcement learning approaches known as policy

gradient methods. Policies, both deterministic and stochastic, may be represented as parameterized
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functions. In this formulation, the adaptation of an agent to a problem is done by selecting that

agents parameters, so as to maximize its expected return. Policy gradient methods select parameters

by computing the gradient of the expected reward and ascending that gradient. Because policy

gradient methods directly construct the policy, rather than relying on an estimate of the state

or state-value function, they are much more computationally efficient for tasks involving state or

action spaces.

Deep Reinforcement Learning

Agents, as defined, admit any realization of a policy, such as finite automata, logic trees, analytic

expressions, and parameterized models, or any combination thereof. Most modern applications

of reinforcement learning are built using neural networks as parameterized function approxima-

tors, collective denoted πθ, where θ is a parameterization of the policy, and trained using back-

propagation of errors. This combination is known as deep reinforcement learning (DRL).

The use of a neural network as a parameterized policy was pioneered by Williams, and is

known as the REINFORCE algorithm [62]. This approach introduced introduced the use of neural

networks as policies and also provided the first application of policy gradients methods to direct

policy optimization. This work formalized the notion of policy gradients, which are defined to be

the gradients of the objective function, J, with respect to the parameters, θ, of a parameterized

function approximating a policy, πθ. Later work by Tesauro applied policy gradient methods to

develop a backgammon planning agent known as TD-Gammon [56], greatly surpassing the prior

state of the art.

The control task addressed in this dissertation requires that a policy map from an image to an

articulation command. This problem is intrinsically high-dimensional, which presents numerous

challenges to classical approaches to sequential control. Historically, approaches to problems with

these features involved extensive hand-designed feature engineering, and rarely succeeded in prac-

tice. In 2013, shortly after AlexNet [26] achieved a substantial improvement in the ImageNet large

scale visual recognition challenge state of the art using CNNs [14], Mnih et al. demonstrated the

viability of deep learning for visual reinforcement learning problems [37]. Mnih et al. introduces the
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Deep Q Network (DQN) technique, in which an ε-greedy agent is used to construct an off-policy

experience replay buffer [33], which is in turn used to estimate the policy gradients with respect

to a temporal difference loss function. The temporal difference function is simply the difference

between the right and left side of the Bellman state-value function (Eq. 1.16),

δ =

(
r (s, a) + γ E

s′∼P

[
E

a′∼π

[
Qπ
(
s′, a′

)]])
−Qπ(s, a). (1.17)

Thus, for a Q-function represented by a network parameterized by θ to be self-consistent, its

temporal-difference error should be near zero. Mhin et al. translate this constraint into a loss

function,

Li(θi) =

(
r (s, a) + γ E

s′∼P

[
max
a′

[
Q
(
s′, a′

)∣∣ θi−1]])−Q(s, a | θi), (1.18)

which is minimized by batch stochastic gradient descent using (s, a, r, s′) tuples stored in the ex-

perience replay buffer. This work provided the first demonstration of effective DRL for control

tasks that require high-dimensional visual perception, but was limited to tasks of comparatively

modest input dimensionality of 84× 84, after hand designed preprocessing. While very influential,

this early work was not easily extensible to real world tasks because the model learns a behaviour

distribution that is based on the assumption that the control dynamics (i.e., the relationship be-

tween a command and the change it causes in the environment state) are, themselves, ε-greedy; in

practice, the control dynamics of real systems can be arbitrarily complex.

Subsequent work by Levine et al. provides further evidence that joint training of the control and

perpetual task models improves task performance compared to training both in isolation, explores

the practical application of DRL to robotic process automation (RPA) tasks, and scales visual

input dimensionality to 240 × 240 [31]. The authors introduce guided policy search, an approach

that combines a controller dynamics model, which learns the conditional control distribution given

the system state (i.e., joint articulations and object positions), with a visuomotor model that maps

from input images to output controls. Intuitively, the controller model simplifies end-to-end learning

by providing a model-based representation of the system dynamics, while on-policy training of the

visuomotor policy learns to predict high-value commands given images of the task. During training,
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the controller requires access to the fully-observable system state, which is not available outside

of highly controlled training environments. However, because the visuomotor policy maps images

to controls, it may be used after training without the high-quality instrumentation necessary to

optimize the the controller model during training. Thus, this method leverages information from a

fully-observable environment during training, but only requires a partially observable environment

at test time.

As with other application domains of deep learning, DRL relies on benchmarking to assess

the progress of the field. Recent work by Duan et al. [17] provides comprehensive benchmarking

of several continuous control policy optimization algorithms across 31 continuous control tasks.

The tasks are divided into four categories, including classical control problems, higher-dimensional

locomotion tasks, partially observable tasks, and hierarchical tasks. The partially observable tasks

were constructed by randomizing features of simulated system, inducing a stochastic delay before an

action is applied to the environment, and reducing or degrading sensor data available to the model.

Task feature randomization and stochastic action latency are both relevant to this dissertation;

Duan et al. report an approximately 67% reduction in cumulative expected reward when these task

complications are introduced. This suggests that methods to improve generalization to partially

observable scenarios may be required. Additionally, this study provides initial benchmark results for

hierarchical tasks, in which a low-level task must be solved in pursuit of a higher level goal. Across

nine algorithms, each subject to hyperparameter search with five repetitions per configuration, no

algorithm produced a policy that achieved a cumulative reward that outperformed a randomly

acting agent on any task. Again, hierarchical problem solving is a feature of the task described in

this work, which suggests that methods related to hierarchical learning may be applicable.

1.3 Conclusion

The approach and objective of this dissertation may now be state concisely and positioned with

respect to prior literature. The work described in this dissertation is a deep reinforcement learning

approach to a partially-observable, hierarchical visuomotor task involving high-frequency articula-

tion of optical elements to manipulate optical diffraction, thereby enabling the reconstruction of
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extended astronomical object imagery.

A review of the literature suggests several potential contributions related to the topic of this

dissertation. As deep learning reinforcement learning methods continue to mature, their application

to scientific and high contrast imagery is likely to grow. There is comparatively little published

work at the intersection of scientific image processing and DRL for visuomotor tasks, but future

scientific and industrial application may be enabled by control of this kind. Additionally, the high-

frequency and hierarchical nature of the task may lead to new methods in time-varying processing

of information at different levels of the task hierarchy.
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D. Halliday. Looking beyond 30m-class telescopes: The Colossus project. In Ground-Based

and Airborne Telescopes V, volume 9145, pages 533–540. SPIE, July 2014.

24



[29] Trent Kyono, Jacob Lucas, Michael Werth, Brandoch Calef, Ian McQuaid, and Justin Fletcher.

Machine learning for quality assessment of ground-based optical images of satellites. Optical

Engineering, 59(5):051403, January 2020.

[30] Yann LeCun and Yoshua Bengio. Convolutional networks for images, speech, and time series.

The handbook of brain theory and neural networks, 3361(10):1995, 1995.

[31] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep

visuomotor policies. The Journal of Machine Learning Research, 17(1):1334–1373, 2016.

[32] Thomas Lillesand, Ralph W. Kiefer, and Jonathan Chipman. Remote Sensing and Image

Interpretation. John Wiley & Sons, 2015.

[33] Longxin Lin. Reinforcement learning for robots using neural networks. undefined, 1992.

[34] Andrei Andreevich Markov. Rasprostranenie zakona bol’shih chisel na velichiny, zavisyaschie

drug ot druga. Izvestiya Fiziko-matematicheskogo obschestva pri Kazanskom universitete,

15(135-156):18, 1906.

[35] Charles L. Matson, Kathy Borelli, Stuart Jefferies, Jr Charles C. Beckner, E. Keith Hege,

and Michael Lloyd-Hart. Fast and optimal multiframe blind deconvolution algorithm for high-

resolution ground-based imaging of space objects. Applied Optics, 48(1):A75–A92, January

2009.

[36] Donald Michie and Roger A. Chambers. BOXES: An experiment in adaptive control. Machine

intelligence, 2(2):137–152, 1968.

[37] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,

Daan Wierstra, and Martin Riedmiller. Playing Atari with Deep Reinforcement Learning.

arXiv:1312.5602 [cs], December 2013.

[38] Kyoung-Su Oh and Keechul Jung. GPU implementation of neural networks. Pattern Recogni-

tion, 37(6):1311–1314, June 2004.

25



[39] J.A. O’Sullivan, R.E. Blahut, and D.L. Snyder. Information-theoretic image formation. IEEE

Transactions on Information Theory, 44(6):2094–2123, October 1998.

[40] Seymour A. Papert. The Summer Vision Project. July 1966.
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